Icon
Markkinoinnin dataharhaisuudesta datakeskeisyyteen Uutiset & blogi

Markkinoinnin dataharhaisuudesta datakeskeisyyteen

30.10.2019 | Marko Saarinen, Tieto Finland

Elämme arjessa, jossa markkinointi, asiakashankinta ja asiakkaiden sitouttaminen muuttuvat yhä datakeskeisemmäksi ja teknologiavetoisemmaksi. Markkinoinnin päättäjistä 40-60% (perustuen useamman viime aikoina läpikäymäni tutkimuksen tuloksiin) kokee organisaationsa yhdeksi suurimmista haasteista puutteet asiakasdatan hyödyntämiseen liittyvässä osaamisessa. Haaste on hyvin laaja-alainen. Kysymys ei ole enää pelkästään perinteisestä asiakasdatan johtamisesta ja hallinnasta, vaan myös sen automatisoinnista ja vapauttamisesta älykkäämpää markkinointia ja markkinointiautomaatiota palvelevaksi.

Olen osallistunut tänä vuonna kahteen hyvin mielenkiintoiseen paneelikeskusteluun, joissa törmäytettiin ajatuksia ja näkemyksiä asiakasdatan - olipa kyseessä sitten profiili-, transaktio- tai vuorovaikutusdata - hyödyntämisestä markkinoinnissa. Tiivistetysti kysymys on siitä, mitkä asiat meidän on syytä pitää mielessä dataa hyödynnettäessä varsinkin, kun perustamme nykyään huomattavan suuren osan liiketoimintakriittisistä päätöksistä sekä markkinoinnin käyttötapauksista ja toimenpiteistä sen varaan. Luonnollisesti myös vahvasti viime aikoina esiin nousseet suunnitelmat ja haaveet mm. ennakoivan (prediktiivisen) markkinoinnin hyödyntämisestä ovat nostaneet datan laatuun, hyödynnettävyyden parantamiseen ja hyödyntämiseen liittyvät pohdinnat pintaan.

1. Data edustaa historiaa

Data kertoo meille, mitä tapahtui. Pohjimmiltaan se siis edustaa historiaa. Vaikka ennakoivan markkinointianalytiikan esityksistä saattaa toisinaan jäädä eri vaikutelma, data ei loppupeleissä kerro, mitä tulee tapahtumaan. Me hyödynnämme asiakashistoriatietoja ja muuta historiallista dataa koneoppimismallin opettamisessa ja testaamisessa. Kaikki tämä tähtää siihen, että voimme tehdä mahdollisimman tarkkoja ja luotettavia ennusteita siitä, mitä tulevaisuudessa tulee tapahtumaan esimerkiksi tulosten tai trendien näkökulmasta, jotta osaamme esimerkiksi kohdentaa mahdollisimman oikeita toimenpiteitä oikeisiin asiakastileihin asiakaspoistuman minimoimiseksi. Toisinaan esimerkiksi toimintaympäristö ja asiakastottumukset (joidenkin mielestä myös valitettavasti) muuttuvat jatkuvasti ja aina historia ei kovin luotettavasti ennusta tulevaisuutta.

2. Data on aina epätäydellistä

Data epätäydellisyys toimii toisinaan ”fantastisena” tekosyynä sille, miksei kannata tehdä mitään. Sen hyväksyminen, ettei meillä ole koskaan kaikkea tarvittavaa tai hyödyllistä dataa käytettävissämme, on kuitenkin tosiasioiden tunnustamista ja hyvin vapauttava tunne.

Meillä voi olla esimerkiksi verkkokaupan myyntiluvut saatavilla ja hyödynnettävissä kahdeksan edellisen kvartaalin eli kahden vuoden osalta. Näemme siis verkkokaupan myynnin kehityksen kvartaaleittain. Tämä on yksittäisenä, eristettynä tapauksena ns. täydellinen datajoukko. Kuitenkin harvojen asioiden tarkastelu eristettynä on järkevää. Päätöksentekotilanteessa (mihin panostamme ensi vuoden osalta) nimittäin huomaamme varsin pian, ettei tämä ole välttämättä ainoa datajoukko, jonka varaan haluamme perustaa päätöksemme ja toimenpiteemme. Me haluamme mahdollisesti myös ymmärtää, mikä on ollut vaikkapa tietyn maan tai asiakassegmentin ostovoiman kehityksen, tarjouskampanjoiden, kilpailutilanteen muutoksen tai verkkokaupassa tehtyjen konversiotoimenpiteiden mahdollinen vaikutus myyntilukuihin tarkastelujakson aikana. Osa tästä datasta on helposti saatavilla, osa ei. Me toimimme datalla, jota meillä on – ei datalla, jonka haluaisimme meillä olevan kerättynä ja hyödynnettävässä muodossa.

3. Data on objektiivista, mutta sen kerääminen ja tulkinta subjektiivista

Data luo illuusion objektiivisuudesta. Kun asiakastyytyväisyystutkimus antaa NPS-kokonaisarvosanaksi vaikkapa 10, on ajan hukkaa kyseenalaistaa sitä, että kokonaisarvosana onkin itse asiassa jotakin ihan muuta. Tähän kokonaisarvosanaan liittyy luonnollisesti tiettyjä ns. isoja kysymyksiä: Mitä dataa kerättiin? Kuinka ja milloin se kerättiin? Ketä tähän tutkittiin ja haastateltiin? Tapamme tulkita dataa on yleensä hyvin subjektiivistä. Taannoinen Harvard Business Review -julkaisun artikkeli kutsui tätä ”datafundamentalismiksi”. Tähän liittyy näkemys siitä, että korrelaatio on yhtä kuin kausaatio (syyn ja seurauksen suhde) sekä massiiviset datamassat ja ennakoiva analytiikka edustavat aina objektiivista totuutta. Kun data-aineistoa on paljon, minkä tahansa kahden asian välille voi syntyä tilastollinen vastaavuus eli asiat näyttävät liittyvän toisiinsa, vaikkei näin olisikaan.

4. Datan tarkkuus ja relevanssi rapautuvat ajan myötä

Erityisesti markkinoinnissa datalla on vääjäämättä parasta ennen -päivä. Ajatellaan vaikkapa Propensity to Buy -malleja, kun koneoppimisen kautta luotuja malleja käytetään ennustamaan toiminnan tuloksia eli tässä tapauksessa sitä, mikä markkinointitoimenpide tuottaa todennäköisimmin halutun tuloksen. Eli ajantasalla oleva asiakasdata vaikuttaa kuitenkin vääjäämättä mallin laatuun ja saavutettaviin tuloksiin. Esimerkiksi kuluttaja-asiakkaalle voi tapahtua paljon melko lyhyessäkin aikaikkunassa: hän voi mennä naimisiin, muuttaa, saada perheenlisäystä, ryhtyä vegaaniksi tms. Täästä syystä asiakasdatan jatkuva kerääminen, rikastuttaminen ja päivittäminen ovat kriittisessä roolissa. Jokainen vuorovaikutustilanne asiakkaan kanssa fyysisissä ja digitaalisissa kanavissa tarjoaa mahdollisuuden tähän. Lisäksi on syytä pitää mielessä, ettei läheskään kaikki asiakasdata ole aidosti arvokasta. Tämän määrittelyn suhteen on hyvä olla kriittinen jo keräämisvaiheessa.

5. Markkinoijien ei tarvitse hankkia matemaatikon taitoja hyödyntääkseen älykästä, dataohjautuvaa markkinointia

Viime vuonna Demandbasen ja Wakefield Researchin tekemässä tutkimuksessa 80% B2B-markkinoijista arvioi tekoälyn mullistavan markkinoinnin vuoteen 2020 mennessä. Ainoastaan 26% tunsi organisaationsa olevan ”mukavuusalueellaan”, mitä tulee tekoälyä hyödyntävien markkinoinnin teknologioiden ja sovellusten hyödyntämiseen. Markkinointiosastojen ei kuitenkaan tarvitse alkaa kouluttaa koko henkilöstöään edistyneen matematiikan, tilastotieteen ja algoritmien maailmaan hyödyntääkseen koneoppimista ja sen tarjoamia mahdollisuuksia markkinoinnissa ja asiakasvuorovaikutuksessa. Johtavat markkinoinnin automaatio- ja orkestrointialustat integroivat tekoälyn saumattomasti mm. tiedon visualisointiin, segmentointiin ja personointiin.

Näiden modernien työkalujen hyödyntäminen vaatii kuitenkin lähes poikkeuksetta melkoisen toimintatapamuutoksen. Monet markkinoijat rajoittavat tällä hetkellä datan hyödyntämisen kampanjoiden tehokkuuden peruutuspeiliarviointiin. Tämä yhdistettynä vanhakantaisiin datanhallintaprosesseihin jättää usein vähän aikaa vahvemmin eteenpäin katsoviin analyyseihin ja proaktiivisten toimenpiteiden suunnitteluun. Markkinointiteknologia, joka aidosti virtaviivaistaa liiketoiminnallisen suorituskyvyn ja tehokkuuden mittaamisen eri kanavissa ja kosketuspisteissä tarjoaa parhaimmillaan mahdollisuuden lähes reaaliaikaisen analyysiin, mikä puolestaan mahdollistaa juurikin proaktiivisemman ja ennakoivan tavan vastata asiakastarpeisiin.

Itsestäänselvyyksiä? Ehkä, mutta miksi nämä itsestäänselvyydet niin usein unohtuvat arjen suunnittelussa ja tekemisessä.

Kirjoittaja Marko Saarinen on Tieto Finlandin Head of Salesforce & Marketing Science.

IABlogin Facebook kommentit

Uutiset
IAB Finland – Uusi hallitus ja painopisteet vuodelle 2022

IAB Finlandin syyskokouksessa 25.11.2021 esiteltiin ensi vuoden painopisteet ja valittiin uusi hallitus. Vuonna 2022 IAB Finland painottaa toiminnassaan digitaalista liiketoimintaa, osaamista ja ymmärrystä sekä kohdentamista ja mittaamista. IAB Finlandin Industry Partner -jäseninä hallitukseen valittiin vuosiksi 2022 - 2023 Adform Software Finland, Alma Media, Sanoma ja SOK Media. Hallitukseen valittiin myös Dagmar ja TietoEVRY.

lue lisää

26.11.2021

IAB Finland – Uusi hallitus ja painopisteet vuodelle 2022

IAB Finlandin syyskokouksessa 25.11.2021 esiteltiin ensi vuoden painopisteet ja valittiin uusi hallitus. Vuonna 2022 IAB Finland painottaa toiminnassaan digitaalista liiketoimintaa, osaamista ja ymmärrystä sekä kohdentamista ja mittaamista. IAB Finlandin Industry Partner -jäseninä hallitukseen valittiin vuosiksi 2022 - 2023 Adform Software Finland, Alma Media, Sanoma ja SOK Media. Hallitukseen valittiin myös Dagmar ja TietoEVRY.

lue lisää

29.10.2021

Kohdennettu mainonta avoimen internetin mahdollistajana

Datakohdennettu mainonta huolestuttaa samalla kuluttajia ja lainsäätäjiä, mutta tuo myös merkittäviä etuja julkaisijoille mahdollistaen mediatilan kaupallistamisen eri kohderyhmien avulla. Liioittelematta voi todeta kohdennetun mainonnan rahoittavan avoimen internetin.

lue lisää

22.09.2021

Verkkomainonnan määrä ennätyksellisen korkealla vuoden toisella kvartaalilla

Verkkomainonnan määrä vuoden 2021 toisella kvartaalilla oli 154 milj. euroa ja lähes puolet (49 %) mediamainonnasta oli digitaalista. Kaikki digimainonnan momentit kasvoivat huomattavasti vuoden takaiseen verrattuna, jolloin tosin pandemia laski myös digimainonnan määrää.

lue lisää

26.08.2021

Traficomin uusi evästeohjeistus on asettamassa haasteita digimarkkinalle

Uusi linjaus on suuri muutos aiempaan kansalliseen tulkintaan. IAB Finland antoi lausuntonsa evästesuositusluonnoksesta, koska se näyttää haastavan evästesuostumuksen pyytämiseen liittyviä vakiintuneita standardeja.

lue lisää